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Abstract 
The remarkable ability of a single genome sequence to encode a diverse collection of distinct cell types, including the thousands of cell types 
found in the mammalian brain, is a key characteristic of multicellular life. While it has been observed that some cell types are far more 
evolutionarily conserved than others, the factors driving these differences in the evolutionary rate remain unknown. Here, we hypothesized 
that highly abundant neuronal cell types may be under greater selective constraint than rarer neuronal types, leading to variation in their rates 
of evolution. To test this, we leveraged recently published cross-species single-nucleus RNA-sequencing datasets from three distinct regions 
of the mammalian neocortex. We found a strikingly consistent relationship where more abundant neuronal subtypes show greater gene 
expression conservation between species, which replicated across three independent datasets covering >106 neurons from six species. 
Based on this principle, we discovered that the most abundant type of neocortical neurons—layer 2/3 intratelencephalic excitatory neurons— 
has evolved exceptionally quickly in the human lineage compared to other apes. Surprisingly, this accelerated evolution was accompanied by 
the dramatic down-regulation of autism-associated genes, which was likely driven by polygenic positive selection specific to the human 
lineage. In summary, we introduce a general principle governing neuronal evolution and suggest that the exceptionally high prevalence of 
autism in humans may be a direct result of natural selection for lower expression of a suite of genes that conferred a fitness benefit to our 
ancestors while also rendering an abundant class of neurons more sensitive to perturbation.
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Introduction
With the advent of single-cell RNA sequencing (scRNA-seq), 
it became possible to systematically delineate molecularly de
fined cell types across the brain (Zeisel et al. 2015; Tasic et al. 
2016). As more large-scale datasets were published, it quickly 
became clear that the mammalian brain contains a staggering 
array of neuronal cell types, with recent whole-brain studies 
identifying nearly as many neuronal types as there are protein- 
coding genes in the genome (Zeisel et al. 2015 ; Tasic et al. 
2016; Yao et al. 2023). In addition, cross-species atlases in 
the neocortex revealed that most cortical neuronal types are 
highly conserved in primates and rodents, with very few neo
cortical neuronal types being specific to primates and none 
being entirely specific to humans (Hodge et al. 2019; 
Krienen et al. 2020; Bakken et al. 2021a , 2021b; Ma et al. 
2022; Jorstad et al. 2023). This suggests that divergence in
volving homologous cell types—such as their patterns of 
gene expression, relative proportions, and connectivity— 
may play a central role in establishing uniquely human 
cognition.

Two decades before the generation of these cross-species 
cell type atlases, the first whole-genome sequences of eukar
yotes were published, enabling genome-wide studies of evolu
tion for the first time (Eyre-Walker 1999). One of the first 
questions to be addressed in the nascent field of evolutionary 
genomics was why some proteins are highly conserved 
throughout the tree of life, whereas, others evolve so quickly 

as to be almost unrecognizable as orthologs even over relative
ly short divergence times (Duret and Mouchiroud 2000; Hirsh 
and Fraser 2001; Pál et al. 2001; Fraser et al. 2002). A pro
tein’s expression level emerged as the strongest and most uni
versal predictor of its evolutionary rate, with highly expressed 
proteins accumulating fewer protein-coding changes due to 
greater constraint (Pál et al. 2001; Drummond et al. 2005, 
2006; Drummond and Wilke 2008).

In contrast to tens of thousands of publications about the 
evolutionary rates of proteins (Yang 2007), the evolutionary 
rates of cell types, another key building block of multicellular 
life, have received relatively little attention (Arendt et al. 
2016). Just as different proteins make up every cell, 
different cell types make up every multicellular organism. 
Furthermore, just as protein evolutionary rates are measured 
by the total rate of change of their amino acids, the evolution
ary rates of cell types—which are typically defined by their 
patterns of gene expression—can be measured by divergence 
in genome-wide gene expression (Hodge et al. 2019; Krienen 
et al. 2020; Bakken et al. 2021a , 2021b; Ma et al. 2022; 
Jorstad et al. 2023). For example, it is well-established that 
the gene expression in neurons is more conserved between hu
mans and mice than the gene expression in glial cell types, such 
as astrocytes, oligodendrocytes, and microglia (Pembroke 
et al. 2021). Previous analogies between genes and neural 
cell types have been fruitful for understanding the evolution 
of novel cell types (Tosches et al. 2018; Hodge et al. 2019; 
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Peng et al. 2019; Kebschull et al. 2020; Luo 2021), providing 
an encouraging precedent for our analogy.

One area that has been explored more thoroughly is the as
sociation of specific cell types with human diseases and disor
ders (Jagadeesh et al. 2022). For example, integration of 
gene-trait associations with cell type-specific expression pro
files has revealed that microglia likely play a central role in 
Alzheimer’s disease (Jansen et al. 2019; Wightman et al. 
2021). Similar analyses have also revealed that layer 2/3 intra
telencephalic excitatory (L2/3 IT neurons)—which enable 
communication between neocortical areas (Galakhova et al. 
2022) and are thought to be important for uniquely human 
cognitive abilities (Berg et al. 2021; Galakhova et al. 
2022)—likely play a particularly important role in autism 
spectrum disorder (ASD) and schizophrenia (SCZ) 
(Parikshak et al. 2013; Kanton et al. 2019; Velmeshev et al. 
2019; Batiuk et al. 2022; Trubetskoy et al. 2022; Pintacuda 
et al. 2023; Dear et al. 2024; Wamsley et al. 2024), together 
with deep layer IT neurons (Trubetskoy et al. 2022; Ruzicka 
et al. 2024; Sullivan et al. 2024). For example, a recent large- 
scale single-cell RNA-sequencing study found that L2/3 IT 
neurons and Somatostatin+ (SST+) inhibitory neurons were 
the most affected in people with ASD (Wamsley et al. 2024). 
In another study, proteins that interact with ASD-linked pro
teins were strongly and specifically enriched for differential ex
pression between ASD cases and controls in L2/3 IT neurons 
(Pintacuda et al. 2023). Collectively, these and other results 
point to a key role for L2/3 IT neurons in ASD, though other 
populations of neurons likely also play important roles. ASD 
and SCZ are neurodevelopmental disorders with different 
but overlapping characteristics, including major effects on so
cial behavior (Dodell-Feder et al. 2015; Jutla et al. 2022; Sato 
et al. 2023). Interestingly, individuals with ASD are more like
ly to be diagnosed with SCZ than individuals without an ASD 
diagnosis (Lugo Marín et al. 2018; Lai et al. 2019; Zheng et al. 
2021; Jutla et al. 2022). Furthermore, there is a strong overlap 
in the genes that have been implicated in both disorders (Jutla 
et al. 2022; Trubetskoy et al. 2022).

From an evolutionary perspective, it has been proposed that 
ASD and SCZ may be unique to humans (Crow 1997; Sikela 
and Searles Quick 2018; Zug and Uller 2022 ). This is primar
ily based on two main lines of reasoning. First, ASD- and 
SCZ-associated behaviors that could reasonably be observed 
in non-human primates (e.g. SCZ-associated psychosis) have 
been observed either infrequently or not at all in non-human 
primates (Crow 1997). However, ASD-like behavior has 
been observed in non-human primates (Yoshida et al. 2016) 
and the difficulties inherent to cross-species behavioral com
parisons, combined with relatively low sample sizes, make it 
difficult to compare the prevalence of these behaviors in hu
man and non-human primate populations. Second, core 
ASD- and SCZ-associated behavioral differences involve cog
nitive traits that are either unique to or greatly expanded in hu
mans (e.g. speech production and comprehension or theory of 
mind) (Marrus et al. 2011; Mody and Belliveau 2013; Faughn 
et al. 2015; MacLean 2016; Chang et al. 2022). As a result, 
certain aspects of ASD and SCZ are inherently unique to 
humans.

While comparing interindividual behavioral differences 
across species remains challenging, recent molecular and con
nectomic evidence lend credence to the idea that the incidence 
of ASD and SCZ increased during human evolution. For 
example, large-scale sequencing studies in both ASD and 
SCZ cohorts have identified an excess of genetic variants in 

human-accelerated regions (HARs)—genomic elements that 
were largely conserved throughout mammalian evolution 
but evolved rapidly in the human lineage (Pollard et al. 
2006; Doan et al. 2016; Shin et al. 2024). Furthermore, tran
scriptomic studies have identified a human-specific shift in the 
expression of some synaptic genes during development that is 
disrupted in ASD (Liu et al. 2016). In addition, connectomic 
studies have shown that human–chimpanzee divergence in 
brain connectivity overlaps strongly with differences between 
humans with and without SCZ (van den Heuvel et al. 2019). 
Overall, evidence suggests that ASD and SCZ may be particu
larly prevalent in humans, but the factors underlying this in
creased prevalence remain unknown. Positive selection—also 
known as adaptive evolution—of brain-related traits in the 
human lineage has been proposed to underlie this increase 
(Crow 1997; Burns 2004; Ploeger and Galis 2011; Sikela 
and Searles Quick 2018; Zug and Uller 2022). Although this 
idea is supported by the links between HARs (many of which 
are thought to have been positively selected [Pollard et al. 
2006]) and ASD and SCZ, there is no direct evidence for posi
tive selection on the expression of genes linked to ASD and 
SCZ.

Here, we set out to test whether the inverse relationship be
tween the abundance and evolutionary rates—which has been 
well-established for proteins (Pál et al. 2001; Drummond et al. 
2005, 2006; Drummond and Wilke 2008)—might also hold 
for cell types. We found a robust negative correlation between 
the cell type proportion and the evolutionary divergence in the 
neocortex, suggesting that this relationship holds at multiple 
levels of biological organization. Based on this, we identify un
expectedly rapid evolution of L2/3 IT neurons and strong evi
dence for polygenic positive selection for reduced expression 
of ASD-linked genes in the human lineage, suggesting that 
positive selection may have increased the prevalence of ASD 
in modern humans.

Results
Cell Type Proportion as a General Factor Governing 
the Rate of Neuronal Evolution
Based on the gene-cell type analogy outlined earlier, we hy
pothesized that a change in the gene expression in a more 
abundant cell type may tend to have more negative fitness ef
fects than the same change in a less abundant cell type 
(Fig. 1a). If this were the case, this would lead to greater select
ive constraint, and thus slower divergence, of global gene ex
pression in more abundant cell types.

Testing this hypothesis requires comparing two quantities: 
the cell type proportions and the evolutionary divergence in 
genome-wide gene expression levels between orthologous 
cell types across species. Importantly, both quantities can be 
estimated from the same single-nucleus RNA-seq (snRNA-seq) 
data, facilitating comparison between them. To ensure sufficient 
statistical power, we searched the literature for published 
snRNA-seq datasets that fulfilled a stringent pair of criteria. 
First, they must have multiple species profiled in the same study 
using the same snRNA-seq protocols for each species within a 
study. Second, they must contain at least 10 orthologous cell 
types having 250 or more cells per species (not including im
mune cells, as these do not have stable cell type proportions). 
We identified three studies fulfilling these criteria, focused on 
three distinct regions of the mammalian neocortex: medial tem
poral gyrus (MTG), dorsolateral prefrontal cortex (DLPFC), 
and primary motor cortex (M1) (Bakken et al. 2021a; Ma 
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(a)

(b)

(c)

(d)

Fig. 1. More common neuronal cell types evolve more slowly than rare types. a) Rationale for the hypothesis that more common neuronal types might 
evolve more slowly than rarer types. A gene expression change in a common cell type has a large negative effect on fitness, whereas the same change in 
a rarer cell type has a smaller effect. Made with BioRender. b) Left: outline of our data analysis strategy. SnRNA-seq from the MTG of five species (14 
subclasses of neurons) was used to estimate each cell type’s proportion and pairwise divergence between species. Right: plot showing the correlation 
between the neuronal subclass proportion (log10 scale on the x-axis) and the subclass-specific divergence between the human and the marmoset in the 
MTG. A representative iteration from 100 independent down-samplings is shown. Spearman’s ρ and P-value shown are the median across 100 
independent down-samplings (see Materials and Methods for details). The line and shaded region are the line of best fit from a linear regression and 95% 
confidence interval, respectively. c) Same as b), but snRNA-seq from the DLPFC (17 subclasses of neurons) of four species was analyzed. d) Same as b), 
but snRNA-seq from M1 (12 subclasses of neurons) of three species was analyzed.
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et al. 2022; Jorstad et al. 2023 ). All three studies included sam
ples from 3 to 5 species, including human and marmoset, with 
300,000 to 500,000 neuronal nuclei profiled per study 
(Bakken et al. 2021a; Ma et al. 2022; Jorstad et al. 2023). 
These nuclei were clustered into between 12 and 17 neuronal 
subclasses (with at least 250 cells per species) in each study, 
which we then used for our analyses (Bakken et al. 2021a; Ma 
et al. 2022; Jorstad et al. 2023). Throughout, we use the term 
cell type for the general concept of different types of cells and 
as an umbrella term for both subclasses and subtypes, use the 
term subclass for the traditional classification of neuronal types 
found in the neocortex, and reserve the term subtype for more 
fine-grained clustering of cells.

To test our hypothesis, we began by comparing human and 
marmoset (the only pair of species present in all three datasets) 
in the MTG, which had the greatest sequencing depth. We first 
estimated gene expression divergence for each of 14 subclasses 
using the Spearman correlation distance (1—Spearman’s ρ) 
between the pseudobulked expression of each species for 
each neuron subclass, restricting to one-to-one orthologous 
genes (see Materials and Methods). We observed a surprising
ly strong negative correlation between the subclass proportion 
and the gene expression divergence (Spearman’s ρ = −0.84, 
P = 8.0×10−5, Fig. 1b), indicating that more abundant neur
onal subclasses showed greater conservation of genome-wide 
gene expression. To ensure that estimates of cell type-specific 
expression divergence were not biased by the cell type propor
tion itself, we analyzed the same number of cells and total 
reads for each cell type in each species. Specifically, for all ana
lyses, we report the median ρ and P-values from 100 independ
ent down-samplings of cells and pseudobulked counts without 
replacement (see Materials and Methods).

We next asked whether the same pattern was present in the 
other cortical regions. We observed a similar strong negative 

correlation in the two other independently generated datasets 
(Spearman’s ρ = −0.76, P = 0.00041 in the DLPFC, Fig. 1c; 
Spearman’s ρ = −0.73, P = 0.0065 in the M1, Fig. 1d). This 
replication suggests that the relationship we observed holds 
true across the primate neocortex. In addition, the fact that 
methodological details and biological samples differ across 
these studies lends additional robustness to any patterns 
shared by all three.

To explore the generality of this result in additional species, 
we repeated this analysis between every pair of species in each 
dataset. We observed similarly strong negative correlations 
across all pairwise comparisons (supplementary figs. S1 to 
S3, Supplementary Material online), with the interesting ex
ception of comparisons between humans and non-human 
great apes, where a weaker negative correlation was observed 
(discussed below). Furthermore, we observed strong negative 
correlations within excitatory or inhibitory subclasses in all 
three brain regions (Fig. 2, supplementary figs. S4 to S9, 
Supplementary Material online, although this correlation 
does not reach statistical significance for inhibitory neurons 
in M1, potentially due to having only five subclasses in that da
taset). In addition, we tested all possible combinations of a 
wide variety of filtering parameters, analysis decisions, and 
distance metrics, finding that this negative correlation was 
generally robust to any reasonable choice of parameters we 
made (supplementary table S1, Supplementary Material
online).

Next, we investigated this relationship at the level of neur
onal subtypes, a finer-grained clustering with ∼4-fold more 
cell subtypes than subclasses. We found strong negative corre
lations between the subtype proportion and the expression di
vergence when using all neurons (Fig. 3a–c, supplementary 
figs. S10 to S12, Supplementary Material online) or only exci
tatory neurons (Fig. 3d–f, supplementary figs. S13 to S15, 

(a) (b)

(d) (e)

(c)

(f)

Fig. 2. More common neuronal cell types evolve more slowly than rare types within excitatory and inhibitory classes. a) Plot showing the correlation 
between the neuronal subclass proportion (log10 scale on the x-axis) and the subclass-specific divergence between the human and the marmoset for 
excitatory neurons in the MTG. A representative iteration from 100 independent down-samplings is shown. Spearman’s ρ and P-value shown are the 
median across 100 independent down-samplings (see Materials and Methods for details). The line and shaded region are the line of best fit from a linear 
regression and 95% confidence interval, respectively. b) Same as in a) but for the DLPFC data. c) Same as in a) but for the M1 data. d) Same as in a) but for 
inhibitory neurons. e) Same as in b) but for inhibitory neurons. f) Same as in c), but for inhibitory neurons.
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Supplementary Material online). When restricting our analysis 
to inhibitory neurons, this correlation was statistically signifi
cant in the MTG and in two of three comparisons (mouse– 
marmoset and human–mouse) in the M1, but not in the 
DLPFC (Fig. 3g–i, supplementary figs. S16 to S18, 
Supplementary Material online). This may reflect the lower 
read depth (average of 180,054 counts used for the DLPFC, 
compared to 254,703 for the M1 and 325,422 for the MTG) 
or lower numbers of cells per subtype in the DLPFC data com
pared to the other datasets, as we observed a much stronger 
negative correlation (Spearman’s ρ = −0.50, P = 0.057) when 
restricting to subtypes with at least 500 cells in the DLPFC 
data (supplementary fig. 19, Supplementary Material online). 
Overall, our results suggest that there is a strong, robust nega
tive correlation between the expression divergence and the cell 
type proportion for neocortical neurons.

Finally, we investigated the properties of the genes driving the 
negative correlation we observed. First, we stratified genes into 
three equally sized bins by their expression level and recom
puted correlations in each bin. Interestingly, while we observed 
strong correlations for highly and moderately expressed genes, 
there was no significant correlation when restricting to lowly 
expressed genes (Fig. 4a, supplementary figs. S20 to S22, 

Supplementary Material online, supplementary table S2, 
Supplementary Material online). Next, we stratified genes 
based on the evolutionary constraint on the expression level 
or cell type-specificity of expression (using shet [Zeng et al. 
2024], a measure of the fitness effect of heterozygous loss of 
function, which typically corresponds to a ∼50% reduction in 
gene expression, and the τ metric [Yanai et al. 2005] respective
ly, supplementary tables S3 and S4, Supplementary Material
online). While there was no difference in the correlation when 
stratifying by constraint on expression (supplementary figs. 
S23 to S25, Supplementary Material online, supplementary 
table S3, Supplementary Material online), we observed a 
much stronger negative correlation between the cell type pro
portion and the expression divergence for more cell type- 
specifically expressed genes (Fig. 4b, supplementary figs. S26 
to S28, Supplementary Material online, supplementary table 
S4, Supplementary Material online). Since the expression 
level is also associated with cell type specificity, we tested 
whether these two properties were contributing independent
ly to the negative correlations by stratifying genes by one 
of them while simultaneously controlling for the other. 
We found that both properties retained their predictive 
power even when controlling for the other (Fig. 4c and d, 

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3. More common neuronal cell types evolve more slowly than rarer types at the subtype level. a) Plot showing the correlation between the neuronal 
subtype proportion (log10 scale on the x-axis) and the subtype-specific divergence between the human and the marmoset in the MTG. A representative 
iteration from 100 independent down-samplings is shown. Spearman’s ρ and P-value shown are the median across 100 independent down-samplings 
(see Materials and Methods for details). The line and shaded region are the line of best fit from a linear regression and 95% confidence interval, 
respectively. b) Same as in a) but for the DLPFC data. c) Same as in a) but for the M1 data. d) Same as in a) but for excitatory neurons. e) Same as in b) but 
for excitatory neurons. f) Same as in c), but for excitatory neurons. g) Same as in a) but for inhibitory neurons. h) Same as in b) but for inhibitory neurons. 
i) Same as in c) but for inhibitory neurons.
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supplementary figs. S29 to S34, Supplementary Material
online, supplementary tables S2 and S4, Supplementary 
Material online), suggesting independent contributions. We 
note that whether the weaker correlations we observed for 

lowly expressed genes were due to a true lack of association 
or simply less accurate expression level measurements re
mains an open question that will require larger datasets to ex
plore. Overall, our results suggest that more highly 

(a)

(b)

(c)

(d)

Fig. 4. More highly expressed, cell type-specific genes drive the negative correlation between the cell type proportion and the evolutionary divergence. 
a) Left: Plot showing the correlation between the neuronal subtype proportion (log10 scale on the x-axis) and the subtype-specific divergence for highly 
expressed genes between the human and the marmoset in the MTG. A representative iteration from 100 independent down-samplings is shown. 
Spearman’s ρ and P-value shown are the median across 100 independent down-samplings (see Materials and Methods for details). The line and shaded 
region are the line of best fit from a linear regression and 95% confidence interval, respectively. Right: Same as the left, but for lowly expressed genes. 
b) Left: Same as in a) but for genes with more cell type-specific expression; Right: Same as left but for genes with less cell type-specific expression. 
c) Same as in b) but controlling for expression level (see Materials and Methods). d) Same as in a) but controlling for cell type-specificity of expression (see 
Materials and Methods).
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expressed, cell type-specific genes are primarily driving the 
negative correlation between the cell type proportion and 
the gene expression divergence.

Rapid Evolution of Layer 2/3 Intratelencephalic 
Neurons in the Human Lineage
Having identified this strong relationship between the cell type 
proportion and the evolutionary divergence, we reasoned that 
cell types with much faster divergence in the human lineage 
than expected based on their abundance may have been sub
ject to atypical selective forces.

To identify subclasses showing the most dramatic lineage- 
specific shifts in selection, we decomposed human–chimpanzee 

MTG expression divergence into its two components, divergence 
on the human branch and divergence on the chimpanzee branch. 
Applying the concept of parsimony—explaining the data with as 
few evolutionary transitions as possible—allows an outgroup 
species such as a gorilla to polarize changes and assign them to 
either the human or chimpanzee branch (see Materials and 
Methods). In the chimpanzee lineage, there was a strong negative 
correlation between the divergence and the subclass proportion 
(Fig. 5a, Spearman’s ρ = −0.77, P = 0.00076), similar to the cor
relations between other primate species (Fig. 1a, supplementary 
fig. S1, Supplementary Material online). However, we observed 
a much weaker negative correlation in the human lineage 
(Fig. 5b, Spearman’s ρ = −0.19, P = 0.49). The clearest outlier 
weakening the correlation was L2/3 IT neurons, the most 

(a) (b)

(c) (d)

(e) (f)

Fig. 5. Accelerated evolution of L2/3 IT neurons in the human lineage. a) Plot showing the correlation between the neuronal subclass proportion (log10 

scale on the x-axis) and the subclass-specific divergence on the chimpanzee branch in the MTG. Chimpanzee branch divergence was computed for each 
of 100 down-samplings, and the mean across those down-samplings is shown. The line and shaded region are the line of best fit from a linear regression 
and 95% confidence interval, respectively. The three rightmost points are L2-5 IT neurons. b) Same as in a) but for human branch divergence. The three 
rightmost points are L2-5 IT neurons. c) Bar plot showing the human branch divergence divided by the chimpanzee branch divergence for each subclass. 
d) Plot showing the correlation between the neuronal subclass proportion (log10 scale on the x-axis) and the subclass-specific interindividual variation 
across DLPFC samples from 25 human individuals. A representative iteration from 100 independent down-samplings is shown. Spearman’s ρ and P-value 
shown are the median across 100 independent down-samplings (see Materials and Methods for details). The line and shaded region are the line of best fit 
from a linear regression and 95% confidence interval, respectively. e) Bar plot showing the human branch divergence divided by the within-human 
variability for each subclass. f) Conceptual model for accelerated evolution of L2/3 IT neurons in the human lineage. Made with BioRender.
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abundant neuronal subclass, which diverged much faster than 
expected based on its proportion. This was also true to a lesser 
extent for the next two most abundant subclasses, L4 IT and 
L5 IT neurons. Indeed, removing these three subclasses substan
tially strengthened the negative correlation between the sub
class proportion and the human-specific divergence (Fig. 5b; 
Spearman’s ρ = −0.59, P = 0.041), making it indistinguishable 
from the corresponding chimpanzee-specific correlation 
(Fig. 5a; Spearman’s ρ = −0.58, P = 0.048). Quantifying the 
magnitude of human acceleration (i.e. the rate of evolution in 
the human lineage relative to the chimpanzee lineage) for every 
subclass confirmed that L2/3 IT neurons underwent the greatest 
acceleration, followed by L4 and L5 IT neurons (Fig. 5c). We 
note that this is not at odds with the overall conservation of 
L2/3 IT neurons when compared to rhesus macaque or marmo
set, as divergence along the human branch only represents a 
small fraction of the total divergence being measured in com
parisons to monkeys.

An increased rate of evolution can involve either positive se
lection, favoring gene expression changes that increase fitness, 
or relaxed selective constraint in which random mutations are 
allowed to accumulate over time because they have little or no 
effect on fitness (Pollard et al. 2006). Although both positive 
selection and relaxed constraint can lead to similar patterns 
of lineage-specific acceleration, they imply very different 
underlying factors: positive selection is the force underlying 
nearly all evolutionary adaptation, while relaxed constraint 
is simply the weakening or absence of natural selection, which 
can lead to the passive deterioration of genes and their regula
tory elements via mutation accumulation.

To distinguish whether positive selection or relaxed con
straint was more likely to underlie the human-specific rapid 
evolution of IT neurons, we investigated the interindividual 
variability in expression of each neuronal subclass in the hu
man population (Emani et al. 2024). If IT neurons evolved 
under reduced constraint in the human lineage, then we would 
expect them to have more variable expression among humans, 
leading to a weaker negative correlation between the subclass 
proportion and the interindividual variability. Instead, we ob
served a strong negative correlation between the subclass pro
portion and the interindividual variability in gene expression, 
with L2/3 IT neurons having the lowest variability of any sub
class among humans (Fig. 5d, Spearman’s ρ = −0.55, P = 
0.049). Consistent with this, L2/3 IT neurons had the largest 
human branch divergence relative to their expression variabil
ity in modern humans (Fig. 5e). Overall, these results suggest 
that the rapid gene expression evolution of L2/3 IT neurons 
in the human lineage was unlikely to be due to relaxed con
straint, and instead more likely the result of positive selection 
(Fig. 5f), though we cannot formally rule out other possible 
scenarios (see Discussion). In addition, it suggests that the re
lationship between the cell type proportion and the expression 
divergence holds within species as well as between species.

Lower Expression of ASD-Linked Genes in Humans 
Compared to Chimpanzees
Our finding of human-specific accelerated evolution of L2/3 IT 
neurons raised the question of what phenotypes may be most 
affected by this. To explore this, we tested gene sets with 
strong evidence of linkage to specific human traits for bias to
ward higher or lower expression in humans relative to chim
panzees in L2/3 IT neurons. These gene sets were derived 
from two sources: the human phenotype ontology (HPO) 

(Köhler et al. 2021), a broad database covering hundreds of hu
man traits, and SFARI, an ASD-specific database. Although 
ASD is often influenced by common genetic variants of small ef
fect, which can be identified by Genome-wide association stud
ies (GWAS), it can also be caused by single large-effect variants, 
typically causing loss-of-function of a core (Boyle et al. 2017) 
ASD gene. The SFARI database is the most comprehensive col
lection of these core genes (Abrahams et al. 2013 ); we refer to 
SFARI genes with a score of 1 as “high-confidence ASD-linked” 
and all SFARI genes, regardless of score, as “ASD-linked.” We 
restricted to only HPO gene sets with greater than 100 genes to 
ensure they were comparable with the SFARI gene set, which 
has 233 genes.

Strikingly, we found that high-confidence ASD-linked genes 
showed a stronger directionality bias in L2/3 IT neurons than 
any of the 359 HPO gene sets tested (4.0-fold enrichment for 
lower expression in the human MTG and 4.3-fold enrichment 
in the DLPFC; P < 10−7 for each; Fig. 6a, supplementary fig. 
S35a, Supplementary Material online). Although some HPO 
gene sets were also enriched, this was mostly a result of pleio
tropic ASD-linked genes being present in multiple gene sets 
(supplementary fig. S35b and c, Supplementary Material on
line). This strong and specific enrichment for lower expression 
of high-confidence ASD-linked genes in human L2/3 IT neu
rons was intriguing, considering the known role of these neu
rons in ASD (Parikshak et al. 2013; Velmeshev et al. 2019; 
Pintacuda et al. 2023; Dear et al. 2024; Wamsley et al. 2024).

We then asked whether this lower expression of high- 
confidence ASD-linked genes was shared in other neuronal 
types beyond L2/3 IT. We found that some types of neurons 
had no significant directionality bias (Fig. 6b), while many 
subclasses shared a bias toward lower expression of high- 
confidence ASD-linked genes in humans compared to chim
panzees, suggesting that down-regulation of ASD-linked genes 
is broadly shared across neuronal types (Fig. 6c). In both the 
DLPFC and the MTG datasets, we observed the most signifi
cant trend toward lower human expression of these genes in 
L2/3 IT neurons (Fig. 6c and d, supplementary fig. S36a–c, 
Supplementary Material online).

Encouraged by these results, we tested whether genes linked 
to SCZ (Singh et al. 2022), another human-specific neuro
psychiatric disorder, show a similar bias. We found an 8-fold 
enrichment for human down-regulation of SCZ-linked genes 
in the DLPFC L2/3 IT neurons (supplementary fig. S44a and 
b, Supplementary Material online). Although this is even stron
ger than the ASD bias, it only reaches a false discovery rate 
(FDR) < 0.05 in three MTG subclasses, such as Lamp5 and 
Pax6 inhibitory neurons, due to much lower statistical power 
(31 SCZ-linked genes vs. 233 high-confidence ASD-linked). 
Consistent with the known genetic overlap between ASD and 
SCZ, six of the SCZ-linked genes are also implicated in ASD, 
making it difficult to disentangle the signal from ASD and SCZ.

This excess of high-confidence ASD-linked genes with lower 
expression in humans is consistent with either down- 
regulation in the human lineage, up-regulation in the chim
panzee lineage, or a combination of both. To distinguish be
tween these possibilities, we used the gorilla as an outgroup 
to assign each gene’s expression divergence in the MTG to ei
ther the human or the chimpanzee lineage.

Comparing the expression of high-confidence ASD-linked 
genes in all three species revealed that the gorilla gene expres
sion is significantly closer to chimpanzee, suggesting that 
there has been greater divergence in the human lineage 
(supplementary fig. S38a, Supplementary Material online). 
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Consistent with this, a significantly larger number of 
high-confidence ASD-linked genes’ expression diverged on 
the human branch than expected by chance in L2/3 IT neurons 
(supplementary fig. S38b, Supplementary Material online). 
In addition, human L2/3 IT neurons have overall lower expres
sion of these genes as compared to all four NHPs in the 
dataset (supplementary fig. S38c, Supplementary Material
online, supplementary table S5, Supplementary Material
online). Overall, these results suggest a consistent pattern of 

human-specific down-regulation of ASD-associated genes in a 
neuronal cell type with a key role in ASD.

Polygenic Positive Selection for Down-Regulation of 
ASD-Linked Genes in the Human Lineage
This human-specific down-regulation of high-confidence 
ASD-linked genes is striking and, based on the highly con
strained expression of these genes, likely functionally signifi
cant. However, as with the accelerated evolution of L2/3 IT 

(a)

(e) (f) (g)

(h) (i)

(b) (c) (d)

Fig. 6. Positive selection for down-regulation of ASD-linked genes in the human lineage. a) Volcano plot showing the log2 fold enrichment for 
down-regulation in humans (x-axis) and the −log10 binomial P-value (y-axis). SFARI high-confidence ASD-linked genes are the rightmost point, all other 
categories of genes are from the Human Phenotype Ontology. Data are from MTG L2/3 IT neurons. b) Bar plot showing the number of high-confidence 
ASD-linked genes that are up-regulated vs. down-regulated in human relative to chimpanzee in the MTG L6 IT Car3+ neurons. c) Plot showing the fold 
enrichment for down-regulation in the human MTG (x-axis) and the −log10 binomial FDR (y-axis). Both neuronal and glial subclasses are included. Only 
subclasses with at least 500 human vs. chimpanzee differentially expressed genes in each direction are shown. d) Bar plot showing the number of 
high-confidence ASD-linked genes that are up-regulated vs. down-regulated in human relative to chimp in MTG L2/3 IT neurons. e) Bar plot showing the 
number of differentially expressed ASD-linked genes with higher allele-specific expression from the human allele and higher expression from the 
chimpanzee allele in cortical organoids. ** indicates binomial P < 0.01. f) Bar plot showing the number of differentially expressed ASD-linked genes with 
higher allele-specific expression from the human allele and higher expression from the chimpanzee allele in day 100 cortical organoids for human-derived 
and chimpanzee-derived genes separately. ** indicates binomial P < 0.01. g) Plot showing the log2 allele-specific expression ratios of differentially 
expressed, human-derived, ASD-linked genes in day 100 cortical organoids. Negative log2 fold-change indicates lower expression from the human allele. 
h) Left: Expression of DLG4 in MTG L2/3 IT neurons; Right: Predicted expression of DLG4 if one copy of the gene were non-functional. i) Conceptual 
model for how positive selection for down-regulation of ASD-linked genes led to a higher likelihood of ASD in humans compared to chimpanzees. Made 
with BioRender.
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neurons discussed above (Fig. 5), the question of whether 
lineage-specific selection was responsible is key to understand
ing the factors that drove this divergence in the human lineage. 
Other potential explanations fall into two main categories. 
One is genetic changes that were not driven by selection, 
such as mutations that had little effect on fitness but became 
established in the human lineage through genetic drift. The 
other is non-genetic differences in the individuals sampled 
for these data sets; factors such as diet, environmental expo
sures, and age can impact the gene expression, but cannot be 
controlled in any comparison of tissue samples between hu
mans and other species.

In order to definitively implicate lineage-specific selection, 
two steps are necessary. First, all non-genetic causes must be 
ruled out. Although this is not possible with tissue samples, 
it can be achieved in vitro. Human and chimpanzee induced 
pluripotent stem cells (iPSCs) can be fused to generate hybrid 
tetraploid iPSCs, which can then be differentiated into rele
vant cell types or organoids (Agoglia et al. 2021; Gokhman 
et al. 2021). In each hybrid cell, the human and chimpanzee 
genomes share precisely the same intracellular and extracellu
lar environment. As a result, any difference in the relative 
expression levels of the human and chimpanzee alleles for 
the same gene—known as allele-specific expression (ASE)— 
reflects cis-regulatory changes between the two alleles. Both 
environmental and experimental sources of variability (in
cluding batch effects) are perfectly controlled in the hybrid 
system, since all comparisons are between alleles that share 
an identical environment and are present in the same experi
mental samples (Agoglia et al. 2021; Gokhman et al. 2021).

The second step necessary to infer lineage-specific selection 
is to test, and reject, a statistical “null model” of neutral evo
lution for the genetic component of divergence (Orr 1998). 
The simplest and most robust pattern predicted under neutral 
evolution of gene expression is the expectation that in a com
parison between two species, genetic variants causing expres
sion divergence will be just as likely to lead to higher 
expression in one species as in the other (Fraser 2011). For ex
ample, in a set of 20 functionally related genes, neutral evolu
tion leads to a similar pattern as a series of 20 coin flips—an 
expectation of ∼10 genes more highly expressed in one species 
and ∼10 in the other, with deviation from this average follow
ing the binomial distribution (Fraser 2011). In contrast, nat
ural selection that favors lower expression of these genes in 
one lineage will lead to a pattern of biased expression, with 
most of the 20 genes expressed at lower in that lineage 
(Fraser 2011). This framework, which has been applied exten
sively to gene expression and other quantitative traits (Orr 
1998; Agoglia et al. 2021; Gokhman et al. 2021; Simon 
et al. 2024; Wang et al. 2024), is known as the sign test. 
Because the ASE of each gene in hybrid cells is generally inde
pendent of that of other genes (Fraser 2011), facilitating stat
istical analysis, hybrid ASE is ideally suited for detecting 
selection with the sign test, whereas the data from non-hybrids 
cannot be used in this manner. This statistical independence of 
each gene’s ASE is a result of their independent cis-regulatory 
elements; since neighboring genes can sometimes share these 
elements, it is always advisable to confirm that the sign test re
sults are not driven by groups of neighboring genes.

To apply this test for lineage-specific selection, we focused on 
a previously published RNA-seq dataset from human– 
chimpanzee hybrid cortical organoids (Agoglia et al. 2021). 
These organoids—which include glutamatergic and GABAergic 
neurons, astrocytes, and neural precursor cells—were sampled 

in a bulk RNA-seq time series of development in vitro (Agoglia 
et al. 2021 ); we focus on the two timepoints, day 100 and day 
150, with the highest proportion of neurons. As described earl
ier, a significant bias in the directionality of ASE for any prede
fined set of genes can reject the null hypothesis of neutral 
evolution, and instead suggest lineage-specific selection. 
Applying this test to ASD-linked genes, we found a strong 
bias toward lower expression from the human allele in cortical 
organoids at two different stages of development (2.0-fold en
richment at day 100 of organoid development; binomial P = 
0.003; Fig. 6e). The bias toward lower expression from human 
alleles was even stronger when using only high-confidence 
ASD-linked genes (2.5-fold enrichment; binomial P = 0.01 at 
day 100; supplementary fig. 39, Supplementary Material on
line). This ASE bias is inconsistent with neutral evolution and 
strongly implies the action of lineage-specific selection on the 
expression of ASD-linked genes.

In addition, although there are very few SCZ-linked genes 
with significant ASE in the hybrid cortical organoid data, among 
all SCZ-linked genes regardless of significance there is some bias 
toward human down-regulation, only reaching significance at 
day 150 (1.5-fold enrichment, binomial test P = 0.28 at day 
100; 2.6-fold enrichment, binomial test P = 0.025 at day 150, 
supplementary fig. S40a and b, Supplementary Material online). 
We interpret these results as preliminary evidence that 
SCZ-linked genes may have also been subject to selection for 
down-regulation in the human lineage, though further work 
will be required to confirm this.

To determine the lineage (human or chimpanzee) on which 
the ASD-linked gene expression changes occurred, for genes 
with matching directionality in the L2/3 IT and organoid 
data, we once again polarized gene expression divergence in 
the MTG into human-derived and chimpanzee-derived cat
egories using gorilla as an outgroup. Out of 17 chimpanzee- 
derived genes, there was no directionality bias in the organoid 
ASE data at either day 100 or day 150 (9 out of 19 with lower 
expression from the human allele at day 100, Fig. 6f and g, 
supplementary fig. 41, Supplementary Material online), con
sistent with neutral evolution. However, out of 32 human- 
derived genes, 27 had lower expression from the human allele 
(Fisher’s exact test P = 0.010 at day 100, odds ratio = 6.0; 
P = 0.010, odds ratio = 8.9 at day 150; Fig. 6f and g, 
supplementary fig. 41, Supplementary Material online). This 
trend is even stronger when using a more relaxed FDR cutoff 
of 0.1 (34 down-regulated in human vs. 5 up-regulated; 
Fisher’s exact test P = 0.0043, odds ratio = 5.9; P = 0.0017, 
odds ratio = 12.5 at day 150). Overall, this strongly suggests 
that many ASD-linked genes were down-regulated specifically 
in the human lineage.

This coordinated down-regulation of 34 ASD-linked genes 
could conceivably be due to either positive selection or loss 
of constraint, as both of these types of lineage-specific selec
tion could lead to down-regulation (Fraser 2011; Simon 
et al. 2024). To determine if ASD-linked genes might be evolv
ing under relaxed constraint in humans, we tested several pre
dictions of the relaxed constraint model. First, genes evolving 
under relaxed constraint might be expected to have accumu
lated more substitutions affecting protein sequence and/or 
gene expression in the human lineage. However, we found 
no difference in the protein sequence constraint (measured 
by dN/dS [Gayà-Vidal and Albà 2014]) or the number of mu
tations near the transcription start site (TSS) between humans 
and chimpanzees (after correcting for genome-wide differen
ces between the two lineages, P = 0.42 for dN/dS, P = 0.24 
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for mutations near TSS, paired t-test, supplementary fig. 42a
and b, Supplementary Material online). In addition, the ex
pression of genes evolving under relaxed constraint in humans 
would likely be more variable across human individuals com
pared to chimpanzee individuals. However, we found the op
posite for ASD-linked genes—slightly less variability in 
expression in humans (P = 0.08 for the DLPFC, P = 2.5×10−5 

for the MTG, paired t-test, supplementary fig. 42c and d, 
Supplementary Material online), suggesting that the expression 
of ASD-linked genes may actually be under stronger constraint 
in humans compared to chimpanzees. Consistent with this, the 
vast majority of ASD-linked genes have strongly constrained ex
pression in humans as measured by loss-of-function intolerance 
(82% of ASD-linked genes have probability of loss-of-function 
intolerance [Chen et al. 2024] >0.9 compared to 17% genome- 
wide and 24% of genes expressed in L2/3 IT neurons; similarly, 
82% of ASD-linked genes have a fitness effect of heterozygous 
loss of function [Zeng et al. 2024] [shet] > 0.1, compared to 
18% genome-wide and 24% of genes expressed in L2/3 IT 
neurons).

Next, we explored whether particular subsets of ASD-linked 
genes had a stronger bias toward down-regulation than other 
ASD-linked genes. ASD-linked genes tend to encode proteins 
that localize to the synapse, encode transcription factors (TFs) 
or chromatin remodelers (CRs), and/or be haploinsufficient 
(Satterstrom et al. 2020). When splitting ASD-linked genes 
into these three partially overlapping categories, we found com
parable human down-regulation in all groups (supplementary 
fig. 43, Supplementary Material online). For example, 83% of 
ASD-linked haploinsufficient genes were down-regulated, 
which is similar to the 75% of ASD-linked non-haploinsufficient 
genes that were down-regulated (supplementary fig. S43a, 
Supplementary Material online). This suggests that ASD-linked 
genes in general, rather than one of these specific subcategories, 
are biased toward down-regulation. Finally, we tested whether 
synaptic genes, TFs/CRs, or haploinsufficient genes in general 
tend to be down-regulated in the human lineage. We found 
that all three categories tend to have lower expression in humans 
compared to chimpanzee L2/3 IT neurons (supplementary fig. 
44, Supplementary Material online). Overall, this suggests 
that the down-regulation of ASD-linked genes we observed 
may be part of a larger trend extending to other genes with 
similar properties as ASD-linked genes, consistent with 
previous work on human-specific synaptic gene expression 
(Jorstad et al. 2023).

Although we cannot rule out any possibility of relaxed con
straint at some point in the past, these results favor a model in 
which polygenic positive selection acted to decrease expres
sion of ASD-linked genes in some types of human neocortical 
neurons, including L2/3 IT neurons (Fig. 6b). As a ∼50% re
duction in the gene expression underlies increased probability 
of the ASD diagnosis for the vast majority of these genes 
(Satterstrom et al. 2020), this suggests that down-regulation 
of ASD-linked genes may have increased ASD prevalence by 
bringing humans closer to a hypothetical “ASD expression 
threshold” below which ASD characteristics manifest. As an 
example, DLG4, which encodes the key synaptic protein 
PSD-95 and for which loss of one copy causes ASD 
(Rodríguez-Palmero et al. 2021), has 2.5-fold lower expres
sion in humans compared to chimpanzees (Fig. 6h). 
Consistent with this, it also has 2.5-fold lower protein abun
dance in the postsynaptic density in humans compared to rhe
sus macaques, and 3.4-fold lower protein abundance in 
humans compared to mice (Wang et al. 2023) (human vs. 

rhesus t-test P = 0.0028, human vs. mouse t-test P = 
0.00014, supplementary fig. 45, Supplementary Material 
online). While this human-specific down-regulation 
(supplementary table S5, Supplementary Material online) 
that led to the current human baseline expression level of 
DLG4 is not sufficient to cause ASD, further down-regulation 
via loss of a single copy may push humans below the ASD ex
pression threshold whereas loss of a single copy in chimpan
zees would maintain expression above this threshold 
(Fig. 6h). Although these genes are linked to ASD primarily 
due to their monogenic effects, the majority of ASD cases 
are thought to be caused by many small genetic and environ
mental perturbations collectively pushing individuals past 
some threshold (Autism Spectrum Disorder Working Group 
of the Psychiatric Genomics Consortium et al. 2019). We pro
pose that the down-regulation of ASD-linked genes in humans 
increased the likelihood of ASD in the human lineage, such 
that small perturbations during development are sufficient to 
cause ASD characteristics in humans but not chimpanzees 
(Fig. 6i).

Discussion
Building on an analogy between genes and cell types, we have 
identified a general principle underlying the rate of evolution 
of different neuronal types in the mammalian neocortex. We 
found a strong negative correlation between the abundance 
of each neuronal cell type and the rate at which its gene expres
sion levels diverge across six mammalian species and three in
dependent datasets (Bakken et al. 2021a; Ma et al. 2022; 
Jorstad et al. 2023). Interestingly, this correlation remained 
very strong when collectively analyzing inhibitory and excita
tory neurons, despite their very different developmental ori
gins and functions (Molyneaux et al. 2007; Lim et al. 2018).

Based on this initial discovery, we found that L2/3 IT neu
rons evolved unexpectedly quickly in the human lineage com
pared to other apes. This accelerated evolution included the 
disproportionate down-regulation of genes associated with 
autism spectrum disorder and schizophrenia, two neurologic
al disorders closely linked to L2/3 IT neurons that are common 
in humans but rare in other apes. Finally, we found that this 
down-regulation, present both in adult neurons and in orga
noid models of the developing brain, was likely due to poly
genic positive selection on cis-regulation. These results differ 
from, but do not contradict, previous findings that a group 
of synapse genes shows human-specific up-regulation during 
early development that is disrupted in people with ASD (Liu 
et al. 2016). Interestingly, it was recently proposed that lower 
expression of ASD-linked genes in males than females may 
magnify the effects of haploinsufficiency of these genes in 
males, leading to a higher risk for ASD in males (Velmeshev 
et al. 2023). This mirrors our proposal that lower expression 
of ASD-linked genes in humans than in chimpanzees increases 
risk for ASD in the human lineage. Overall, our analysis sug
gests that natural selection on gene expression may have in
creased the prevalence of ASD, and perhaps also SCZ, in 
humans (Fig. 6h).

Although it has been widely hypothesized that natural selec
tion for human-specific traits has increased human disease risk 
(Crow 1997; Varki 2001; Vasseur and Quintana-Murci 2013; 
Benton et al. 2021; Zug and Uller 2022), unambiguous evi
dence for this has been lacking. While there is strong evidence 
linking natural selection on within-human genetic variation to 
disease risk (e.g. sickle cell disease [Sabeti et al. 2006]), it has 
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proven far more challenging to find similar examples involving 
genetic variants shared by all humans. There are human– 
chimpanzee differences that have been linked to interspecies 
differences in disease risk (e.g. human-specific pseudogeniza
tion of the CMAH gene, which is thought to have shaped hu
man susceptibility to infectious diseases [Chou et al. 1998; 
Varki 2001; Dankwa et al. 2016]), but there is no evidence 
for positive selection on these interspecies genetic differences. 
In addition, while there are many examples of positive selec
tion on human–chimpanzee differences (Enard et al. 2014; 
Gayà-Vidal and Albà 2014; Agoglia et al. 2021; Gokhman 
et al. 2021; Starr et al. 2023; Wang et al. 2024), these changes 
have no clear link to the likelihood of diseases or disorders in 
humans. Finally, although the enrichment for ASD-linked var
iants within HARs (Doan et al. 2016; Shin et al. 2024) is sug
gestive of a role for human–chimpanzee differences in HARs 
(many of which are thought to be positively selected [Pollard 
et al. 2006]) in increasing the likelihood of ASD in 
humans, a connection between those human–chimpanzee 
differences and ASD has not been established. Overall, 
our findings provide the strongest evidence to date supporting 
the long-standing hypothesis that natural selection for human- 
specific traits has increased the likelihood of certain disorders.

Although our results strongly suggest natural selection for 
down-regulation of ASD-linked genes, the reason why this con
ferred fitness benefits to our ancestors remains an open question. 
Answering this question is difficult in part because we do not 
know what human-specific features of cognition, brain anat
omy, and neuronal wiring gave our ancestors a fitness advan
tage, but we can speculate about two general classes of 
evolutionary scenarios. First, down-regulation of ASD-linked 
genes may have led to uniquely human phenotypes. For ex
ample, haploinsufficiency of many ASD-linked genes is associ
ated with developmental delay (Zug and Uller 2022), so their 
down-regulation could have contributed to the slower postnatal 
brain development in humans compared to chimpanzees. 
Alternatively, capacity for speech production and comprehen
sion is unique to or greatly expanded in humans and often im
pacted in ASD and SCZ (Chang et al. 2022; Vogindroukas 
et al. 2022). If down-regulation of ASD-linked genes conferred 
a fitness advantage by slowing postnatal brain development or 
increasing the capacity for language, that could result in the sig
nal of positive selection we observed.

On the other hand, the down-regulation we observed may 
have been compensatory and reduced the negative effects of 
some other human-specific trait or traits. For example, the ra
tio of excitatory and inhibitory synapses on pyramidal neu
rons is fairly constant between humans and rodents despite 
massive differences in brain and neuron size (DeFelipe et al. 
2002). In addition, excitatory-inhibitory imbalance is a lead
ing hypothesis for the circuit basis of ASD (Sohal and 
Rubenstein 2019). If human brain expansion, changes in me
tabolism, or any other factor shifted this balance away from 
the fitness optimum, down-regulation of ASD-linked genes 
could potentially compensate. Overall, more work is needed 
to understand how natural selection acting on the expression 
of ASD-linked genes in the human lineage may have shaped 
human phenotypes.

Our results come with important caveats. As with most cor
relations, causality is not implied. Our initial hypothesis was 
that cell type proportions may affect evolutionary rates via 
more severe fitness effects of expression changes in more abun
dant cell types, leading to greater evolutionary constraint than 
in rare cell types (Fig. 1a). While this is a plausible explanation 

for our results, there also may be unknown correlates of cell 
type proportion that are causal. We leave explicit testing of 
this model to future work. Another caveat is that the cortical 
organoid data are from a different developmental timepoint 
and mix of cell types than the pure population of adult L2/3 
IT neurons we focus on. In the future, it will be informative 
to investigate more mature populations of human–chimp hy
brid excitatory neurons in vitro to compare with adult L2/3 
IT neurons in vivo. As with most studies of non-human great 
apes, the sample sizes used here (ranging from 4 to 7 individ
uals) are relatively small, and it will be important to confirm 
these results with larger cohorts. This will also enable more 
thorough investigation of lowly expressed genes. Finally, al
though changes in subtype proportions can give rise to appar
ent accelerated evolution, the L2/3 acceleration we observed is 
broadly distributed across L2/3 subtypes (not shown), sug
gesting that changes in relative subtype abundances do not ex
plain this result.

Along with establishing a mechanism underlying these cor
relations, another exciting future direction will be to explore 
this phenomenon in other tissues and brain regions. While 
cross-species atlases from other brain regions exist, they gen
erally lack a sufficient number of cells profiled (Bakken et al. 
2021b; Kamath et al. 2022 ) or fail to meet our inclusion cri
teria in other ways (see Materials and Methods). However, 
this will become increasingly feasible as additional large cross- 
species snRNA-seq studies are published and enable explor
ation of how generalizable our results are across tissues. An es
pecially interesting question will be whether rare but vital 
neuron cell types (e.g. serotonergic or dopaminergic neurons 
[Weiger 1997; Bromberg-Martin et al. 2010]) follow the 
same pattern we have observed for neocortical neurons; this 
will help distinguish between cell type abundance vs. import
ance as the driving factor underlying the relationship we 
have observed. It will also be interesting to explore what fac
tors are associated with the rate of cell type-specific gene ex
pression divergence in contexts that lack stable cell type 
proportions (e.g. during development or in the immune sys
tem). Finally, it is worth noting that the cell type proportion 
is unlikely to be the sole driver of differences in evolutionary 
rate between cell types. For example, oligodendrocytes and as
trocytes are more common than neurons in some parts of the 
brain, yet evolve more quickly than neurons, hinting at add
itional core principles governing the rate at which cell types 
evolve (Pembroke et al. 2021). We leave exploration of this 
question to future work.

Considering that many ASD-linked genes are extremely sen
sitive to perturbations in their expression, our findings raise 
the important question of how significant reductions in the ex
pression of so many dosage-sensitive genes were tolerated in 
the human lineage. As haploinsufficiency of many of these 
genes has severe fitness consequences in both humans and 
mice (Zug and Uller 2022), it is unlikely that these changes oc
curred through single mutations of large effect. In addition, 
our analysis of allele-specific expression suggests that cis- 
regulatory changes underlie many of the gene expression 
changes we observe. Therefore, we favor a model in which 
many cis-acting mutations of small effect are fixed over time, 
eventually leading to the large-scale down-regulation of 
ASD-linked genes in the human lineage. It will be interesting 
to use deep learning predictions of variant effects combined 
with experimental validation to identify the genetic differences 
underlying changes in the expression of ASD-linked genes in 
the human lineage.
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It is also possible that the down-regulation of many 
ASD-linked genes is less deleterious than the down-regulation 
of a single gene. As an analogy, whole-genome duplications 
can be well-tolerated in vertebrates, even though duplication 
of some individual genes—including many of those linked to 
ASD—can be far more deleterious. An intuitive explanation 
for this counterintuitive observation is that relative expression 
levels, or stoichiometry, could impact fitness even more than 
absolute expression levels (Darnell 2020). Under this model, 
the key idea is that the down-regulation of many ASD-linked 
genes would have less impact on their relative levels than a 
change in the expression of a single gene. Finally, it is worth 
considering an alternative model. Rather than pushing hu
mans closer to some gene expression threshold beyond which 
ASD-like traits manifest, down-regulation of ASD-linked 
genes may have made neuronal networks more sensitive to 
genetic or environmental perturbations. In this model, hu
mans are no closer to the ASD-like trait threshold in the ab
sence of some perturbations, but identical perturbations 
would have larger effects in humans and be more likely to re
sult in ASD-like traits. Excitingly, Clustered interspaced short 
palindromic repeats (CRISPR) or CRISPR-based methods to 
precisely manipulate the expression levels of many genes at 
once may soon allow us to more directly test these hypotheses. 
Overall, it will be important to develop a deeper understand
ing of how cell types and genes implicated in ASD and SCZ 
have evolved in the human lineage, as this will improve our 
understanding of uniquely human traits and neuropsychiatric 
disorders.

Materials and Methods
Quantifying Cell Type-Specific Gene Expression 
Divergence Between Species
We analyzed three main datasets in this study, which we refer 
to by the cortical area sampled (MTG, DLPFC, M1). These 
were the only studies meeting both of our inclusion criteria: 
multiple species profiled in the same study using the same 
snRNA-seq protocols for each species within a study, and at 
least 10 orthologous cell types having 250 or more cells per 
species. The following are examples of studies that did not 
meet these inclusion criteria: 

• A multi-species study of the retina used different proto
cols for different species, and not all species were sampled 
as part of the same original study. For example, different 
antibodies were used to enrich for subpopulations of cells 
in different species, and some species did not have a suffi
cient number of cells profiled without enrichment to ac
curately estimate cell type proportions (Hahn et al. 2023).

• A multi-species study of substantia nigra dopaminergic 
neurons did not have a sufficient number of cells profiled 
per species (Kamath et al. 2022).

• A multi-species study of the lateral geniculate nucleus did 
not profile enough cells per species, and their dissection 
scheme was incompatible with estimating neuronal cell 
type proportions (Bakken et al. 2021b).

All statistical tests and analyses were performed in Python 
using scipy v1.10.1 (Virtanen et al. 2020) except for the 
DESeq2 analysis. For the M1 and MTG data, we converted 
from RDS files to h5 files using Seurat and Seurat Disk (Hao 
et al. 2021). We conducted all analyses within each dataset 
to avoid batch effects from comparing across datasets. We 

used the cell type annotations and count matrices directly 
from the study that first reported the dataset in conjunction 
with scanpy v1.7.2 (Wolf et al. 2018). The procedure outlined 
below was performed 100 times independently on each data
set unless otherwise noted. To quantify cell type-specific ex
pression divergence without confounding with cell type 
proportion, we first down-sampled the number of cells in 
each cell type so that it was equal across all cell types and spe
cies. We down-sampled without replacement to 250 cells at 
the subclass level and 50 cells at the subtype level for the 
main analysis presented in the text. Only subclasses and sub
types with at least this many cells were included in down
stream analysis. We then restricted to five-way one-to-one 
protein-coding non-mitochondrial orthologs (downloaded 
from Ensembl Biomart for hg38) (Yates et al. 2022) between 
human, chimpanzee, gorilla, rhesus macaque, and marmoset 
for the MTG and DLPFC data, and three-way one-to-one or
thologs for human, marmoset, and mouse for the M1 dataset. 
We then summed the expression across all cells within a cell 
type to create a pseudobulked expression profile for that cell 
type.

For each possible pairwise comparison between species, we 
down-sampled the total counts in each cell type so that it was 
equal across all cell types for both species in the comparison. 
We then computed counts per million (CPM) in each cell 
type. After computing CPM, we filtered out genes with (1) 
fewer than 25 counts in both species or (2) fewer than 1 
CPM in both species per cell type. As a result, if a gene passed 
the filtering criteria in one cell type but not another, it would 
be included only for the cell type in which it passed the filtering 
criteria. We then computed the log2(CPM) and used the 
Spearman correlation distance, which is nonparametric and 
robust to outliers, to measure the gene expression divergence 
between species in each cell type. We focused on the 
Spearman correlation and not more sophisticated models 
(e.g. generalized linear mixed models) for two reasons beyond 
those outlined above. First, non-ape samples were generally 
sex-balanced, had similar ages, and had very low postmortem 
intervals, suggesting very minimal sources of variation outside of 
species. Second, principal component analysis revealed that the 
first principal component corresponded to species and explained 
a large majority of the variance. For example, and consistent 
with the first point, PC1 corresponded to species and explained 
88% of the variance when comparing macaque and marmoset 
DLPFC L2/3 IT neurons. Similarly, for human and chimpanzee, 
PC1 corresponded to species and explained 87% of the variance 
(PC2 explained 4% of the variance). Overall, this suggests that 
any potentially confounding sources of variation are minimal, 
supporting the use of the Spearman correlation.

Notably, this process involved several analysis decisions that 
could affect our results. To test how robust our results were to 
these choices, we tested all combinations of the following: 

1. Down-sampling to 50, 100, 250, or 500 cells.
2. Filtering genes with fewer than 5, 10, 25, or 50 counts.
3. Filtering genes with fewer than 1 or 5 CPM.
4. Using log2(CPM) or not log transforming.
5. Using the Spearman correlation distance, Pearson correl

ation distance, Euclidean distance, or L1 distance metrics.

In general, our results were robust to any combination of these 
parameters (supplementary tables, Supplementary Material 
online). When stratifying, we only used a subset of these 
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combinations due to the greater number of computations re
quired. Although we considered applying a variance stabilizing 
transformation (e.g. the log of raw expression plus a pseudo
count) to the single-cell data before pseudobulking, we think 
that the chosen methodology is most consistent with standard 
practices in the field (Squair et al. 2021) and likely best reflects 
the expression level of genes had we performed bulk RNA-seq 
on pure populations of cells. However, we verified that our re
sults were robust to applying a variance stabilizing transform
ation. For example, applying the log(read count plus 1) 
transformation (Ahlmann-Eltze and Huber 2023) to all neurons 
in the DLPFC at the subclass level, this results in Spearman’s 
ρ equal to −0.68 (P = 0.0029), which is quite similar to the value 
of −0.76 shown in Fig. 1c.

Computing Cell Type Proportions and Correlation 
With Gene Expression Divergence
All three datasets were generated with snRNA-seq and so like
ly accurately represent the true proportion of neuronal cell 
types in the neocortex (Ding et al. 2020). To compute cell 
type proportions, we restricted to neuronal cells with greater 
than or equal to the number of cells we down-sampled to. 
We then computed cell type proportion separately for each 
species by dividing the number of cells of each type by the total 
number of cells profiled. For each interspecies comparison, we 
averaged the cell type proportion across both species. We then 
computed the Spearman correlation between the averaged cell 
type proportions and the cell type-specific gene expression di
vergence computed as described above. As we did this across 
100 independent down-samplings (numbered 1 to 100), we re
ported the median Spearman’s ρ and P-value throughout the 
text and figures. If there was an individual down-sampling it
eration that had the median Spearman’s ρ and P-value, we 
made the scatterplots shown in Figs. 1 to 4 using the first 
such iteration. If no iteration had the median ρ and P-value, 
we showed the iteration closest to the median with the greatest 
number of iterations that had ρ and P-value. For example, if 
22 iterations resulted in ρ = −0.5 and 19 iterations resulted 
in ρ = −0.6, both of which were closest to the median of 
−0.55, then an iteration with −0.5 would be shown. If there 
was still a tie after this process, we showed the iteration 
with the lowest number. Because the Spearman correlation is 
a nonparametric rank-based test, it is unaffected by any rank- 
preserving transformation of the data; therefore, our choice to 
show scatter plots with log-transformed cell type proportions 
was for visualization only and had no effect on the results.

To estimate divergence along the human branch, we used 
the formula

HC divergence + HG divergence − CG divergence
2 

Here HC stands for human–chimp, HG stands for human– 
gorilla, and CG stands for chimp–gorilla.

Similarly, to estimate divergence along the chimp branch, 
we used the formula

HC divergence + CG divergence − HG divergence
2 

Stratifying by Expression Level, Cell Type-Specificity 
of Expression, and Constraint on Expression
To stratify by expression level, we ranked genes by the average 
CPM between the two species being compared for each cell 

type separately. We then assigned the top third of genes with 
the highest expression to the highly expressed bin, the next 
third to the moderately expressed bin, and the remaining third 
to the lowly expressed bin. Whenever we stratified by expression 
level or another metric, we used the Euclidean distance to meas
ure the gene expression divergence because the limited dynamic 
range of expression for the moderately and lowly expressed bins 
led to unrealistically high correlation distances. Similarly, we 
ranked genes by τ (Yanai et al. 2005), a measure of how cell 
type-specifically a gene is expressed, and split those genes into 
three bins. We computed τ separately for both species across 
all subclasses or subtypes with a sufficient number of cells and 
then computed the average value for each gene. For constraint 
on expression, we considered all genes with heterozygous loss 
of function (corresponding to an approximately 50% reduction 
in the gene expression) fitness effect (Zeng et al. 2024) shet > 0.1 
to be highly constrained, genes with shet between 0.1 and 0.01 as 
moderately constrained, and the remaining genes with shet < 
0.01 to be lowly constrained. Because there was a different num
ber of genes in each bin in this case, we down-sampled genes to 
reach an equal number in each bin.

When controlling for expression level and stratifying by τ, 
we compared the high bin with the moderate and low bins sep
arately. To control expression, we first computed the log2 

fold-change between all genes in the high bin and all genes 
in the moderate or low bin, and restricted to pairs of genes 
with absolute log2 fold-change less than 0.05. We then split 
this list of gene pairs into those with a negative log2 fold- 
change, positive log2 fold-change, and zero log2 fold-change, 
shuffled the list, and removed duplicate genes. We kept all 
gene pairs with a log2 fold-change of zero and down-sampled 
the list of gene pairs with positive or negative log2 fold-change 
so that there were an equal number in each category. This re
sulted in a final set of genes in the high bin with matched ex
pression to genes in the moderate or low bin, which we used 
to compute cell type-specific gene expression divergence. 
When controlling for τ, we applied the same strategy but re
quired an absolute log2 fold-change less than 0.01.

Comparing Interindividual Variability in Gene 
Expression and Cell Type Proportion
To measure the within-human interindividual variation in cell 
type-specific gene expression, we used a uniformly processed 
dataset from the DLPFC (Emani et al. 2024). We restricted 
to control samples from individuals of European ancestry 
with an age of death greater than or equal to 25. We selected 
13 neuronal subclasses for which the majority of individuals 
had greater than 50 nuclei profiled for further analysis, and re
stricted to samples with greater than or equal to 50 nuclei for 
all 13 subclasses. After this filtering process, 25 samples re
mained. Next, we down-sampled to 50 nuclei from each sub
class in each dataset and computed pseudobulked counts. We 
then down-sampled counts so that there was an equal number 
of total counts across all subclasses for each individual. For 
each subclass, we removed genes with average counts across 
all individuals less than 25 and computed CPM. We then com
puted the Spearman correlation distance between each sample 
and the mean expression profile across all samples and took 
the mean of those 25 correlation distances as our measure of 
cell type-specific gene expression variation within humans. 
We performed this procedure across 100 independent down- 
samplings. To estimate cell type proportions, we computed 
the cell type proportions for the 13 subclasses and averaged 
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them together. We then computed the Spearman correlation 
between the subclass-specific interindividual variation and 
the cell type proportions across the 100 down-samplings. 
We report the median Spearman’s ρ and P-value across the 
100 down-samplings and show the first down-sampling with 
the median Spearman’s ρ and P-value in Fig. 5d.

Analysis of ASD- and SCZ-Linked Genes in 
snRNA-seq Data
We used the SFARI gene database of ASD-linked genes and 
considered any genes with a score of 1 to be “high- 
confidence” (233 total) and all genes, regardless of score 
to be all ASD-linked genes (1,176 genes) (Abrahams et al. 
2013). As we are not aware of a similar resource for SCZ, 
we used the 31 genes with FDR < 0.1 in a recent rare variant 
association study for SCZ (Singh et al. 2022). We do not use 
GWAS in this analysis as it is often difficult to determine the 
true causal gene(s) and their direction of effect (e.g. whether 
increased or decreased gene expression is associated with the 
disorder). Although this limits the number of traits we can 
test, it ensures that the gene-trait links we analyze are causal 
and have large effects with known directionality. 
Throughout, FDRs were corrected for multiple tests with 
the Benajmini–Hochberg method. To identify differentially 
expressed (DE) genes and compute log2 fold-changes be
tween species, we ran DESeq2 (Love et al. 2014) on the 
subclass-level pseudobulked counts and used apeglm (Zhu 
et al. 2019) to shrink the log2 fold-changes. To test for a 
bias toward lower expression of ASD- and SCZ-linked genes 
in each cell type, we restricted to genes with FDR < 0.05 in 
the human–chimpanzee comparison and used the binomial 
test comparing the number of genes with negative log2 fold- 
change (i.e. higher expression in chimpanzee) to the number 
of genes with positive log2 fold-change. We used the fre
quency of negative log2 fold-changes among all genes with 
FDR < 0.05 as the background probability in the binomial 
test. We repeated this for both high-confidence and all 
ASD-linked genes.

To determine whether the higher expression in chimpanzees 
relative to humans was more likely due to changes on the 
chimpanzee branch or the human branch, we first filtered to 
only high-confidence ASD-linked genes that were differential
ly expressed between chimpanzees and gorillas in L2/3 IT neu
rons. Genes were assigned as having a significant 
human-derived or chimpanzee-derived expression change in 
the MTG dataset by comparison with the human–gorilla 
and chimpanzee–gorilla log2 fold-changes. First, if the abso
lute human–gorilla and chimpanzee–gorilla log2 fold-change 
were both greater than the absolute human–chimpanzee log2 

fold-change, that gene was considered ambiguous. After re
moving ambiguous genes, a gene was considered as having a 
human-derived expression change if the absolute human–gor
illa log2 fold-change was greater than the absolute human– 
chimpanzee log2 fold-change and vice versa for chimpanzee- 
derived. To generate supplementary table S5, Supplementary 
Material online, we used strict criteria to call genes as having 
a human-specific gene expression change in the MTG data, re
quiring that a gene be differentially expressed (i.e. FDR < 
0.05) for each human-NHP comparison with the same direc
tion of differential expression. We then added the SFARI score 
and whether a gene is considered syndromic, and only in
cluded genes that are differentially expressed (FDR < 0.05) be
tween the human and the chimpanzee.

Analysis of ASD-Linked Genes in 
Human–Chimpanzee Hybrid Cortical Organoid Data
We used the previously described dataset from human– 
chimpanzee cortical organoids, reprocessed as previously de
scribed (Starr et al. 2023). Briefly, reads were aligned to the 
human (hg38) and chimpanzee (PanTro6) genomes with 
STAR and corrected for mapping bias using Hornet (Van De 
Geijn et al. 2015). Reads were assigned to the human or chim
panzee allele using a set of high-confidence human–chimp 
single nucleotide differences and collapsed to counts per 
gene with ASEr. DESeq2 (Love et al. 2014) was used to iden
tify genes with significant ASE with the hybrid line that each 
sample was from used as a covariate. DESeq2 (Love et al. 
2014) and apeglm (Zhu et al. 2019) were used to compute 
log2 fold-changes. For the below analyses, we used the 
chimpanzee-aligned data, which has a very slight bias toward 
higher expression from the human allele. It has previously 
been shown that tetraploidy has little to no effect on gene ex
pression in these cells (Song et al. 2021).

To test for a significant bias toward down- or up-regulation 
from the human allele for ASD- or SCZ-linked genes, we re
stricted to genes with FDR < 0.05 in the cortical organoid 
data and intersected those genes with the list of ASD- or 
SCZ-linked genes. We then used the binomial test comparing 
the number of genes with negative log2 fold-change (i.e. higher 
expression in the chimpanzee) to the number of genes with 
positive log2 fold-change. We used the frequency of negative 
log2 fold-changes among all genes with FDR < 0.05 as the 
background probability in the binomial test. We repeated 
this for both high-confidence and all ASD-linked genes. To in
vestigate whether these cis-regulatory changes likely occurred 
in the human or chimpanzee lineage, we used the assignments 
as human- or chimpanzee-derived from L2/3 IT neurons in the 
MTG dataset described above. For genes that had matching 
human–chimpanzee log2 fold-change sign in both the MTG 
and cortical organoid datasets, we created a 2×2 table of hu
man/chimp-derived and down/up-regulated from the human 
allele and applied Fisher’s exact test.

Analysis of Constraint on ASD-Linked Genes in 
Humans and Chimpanzees
We used previously published dN/dS estimates (Gayà-Vidal 
and Albà 2014) and restricted only to genes with at least 
one synonymous and nonsynonymous difference on both the 
human and chimpanzee branches. We compared dN/dS values 
for ASD-linked genes with a paired t-test. To compute the 
number of genetic differences within 5 kb of the TSS for 
each lineage, we used our previously described set of high- 
confidence human–chimpanzee single nucleotide genetic dif
ferences (Starr et al. 2023). Briefly, this was created by identi
fying all single nucleotide differences between PanTro6 and 
hg38 and filtering out sites that were not homozygous for 
the reference allele in three humans and three chimpanzees. 
We then intersected this with a previously described list of hu
man–chimpanzee orthologous TSS expanded by 2.5 kb on ei
ther side and restricted to only TSS for ASD-linked genes 
(Wang et al. 2024). To correct for the slightly larger number 
of human-derived sites across all genes, we down-sampled 
the human-derived variants near the TSS of ASD-linked genes, 
keeping a fraction of sites equal to the total number of chimp- 
derived genetic differences divided by the total number of 
human-derived genetic differences. We then used a paired 
t-test to compare the two distributions.
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To compare the within-species variance for humans and 
chimpanzees in expression of ASD-linked genes, we computed 
the variance in pseudobulked CPM from L2/3 IT neurons 
across individuals in the DLPFC and MTG separately. As 
the mean expression level and batch effects can have a major im
pact on the expression variance, we normalized the variance to 
the variance of the 100 genes with the closest mean expression to 
each ASD-linked gene. To do this, we computed the fraction of 
those 100 genes with smaller variance than the focal ASD-linked 
gene in each species and dataset separately. We then compared 
the values in humans and chimpanzees with a paired t-test.

Comparing Different Phenotypes and Gene 
Categories to ASD-Linked Genes
To compare down-regulation of high-confidence ASD-linked 
genes to genes associated with other phenotypes, we used 
the HPO, restricting to phenotypes with at least 100 genes. 
We tested all these gene sets in addition to the high-confidence 
ASD-linked genes and computed fold-enrichment as described 
above for ASD-linked genes. We controlled for gene expres
sion as described in the “Stratifying by expression level, cell 
type-specificity of expression, and constraint on expression” 
section, filtering out all gene pairs with an absolute log fold- 
change greater than 0.1.

To subset ASD-linked genes, we used all genes present in the 
SynGo database (Koopmans et al. 2019) as our list of synaptic 
genes, all genes classified as “1—Monomer or homomultimer,” 
“2—Obligate heteromer,” “3—Low specificity DNA-binding 
protein” from Lambert et al. (2018) as our list of transcription 
factors and chromatin remodelers, and all genes with pLI > 0.9 
from gnomad version 4.1 (Chen et al. 2024) as our list of hap
loinsufficient genes. We intersected these with the set of 
ASD-linked genes with these lists and removed all ASD-linked 
genes from those lists to define genes as “ASD-linked and in a 
category” or “ASD-linked and not in a category,” respectively. 
We also removed genes in a category from the list of ASD-linked 
genes to define the list of genes that are ASD-linked and, for ex
ample, not synaptic. When working with the MTG data, we al
ways subsequently restricted to high-confidence ASD-linked 
genes. With these categories in hand, we then computed the pro
portion of genes in each category that are down-regulated. We 
used the binomtest function from scipy with the background 
probability set to the proportion of genes in a category not 
linked to ASD that are down-regulated to test whether 
ASD-linked genes within a particular category were more down- 
regulated than genes in the category that are not linked to ASD.

Analysis of Postsynaptic Proteomics Data
We plotted PSD-95 protein abundances from the supplemen
tal materials of Wang et al. (2023). We used the t-test to com
pare levels between species.

Supplementary Material
Supplementary material is available at Molecular Biology and 
Evolution online.
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Fraser HB. Primate cell fusion disentangles gene regulatory diver
gence in neurodevelopment. Nature. 2021:592(7854):421–427. 
https://doi.org/10.1038/s41586-021-03343-3.

16                                                                                                                             Starr and Fraser · https://doi.org/10.1093/molbev/msaf189
D

ow
nloaded from

 https://academ
ic.oup.com

/m
be/article/42/9/m

saf189/8245036 by guest on 29 S
eptem

ber 2025

http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaf189#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaf189#supplementary-data
https://labshare.cshl.edu/shares/gillislab/resource/Primate_MTG_coexp/Great_Ape_Data/
https://labshare.cshl.edu/shares/gillislab/resource/Primate_MTG_coexp/Great_Ape_Data/
https://labshare.cshl.edu/shares/gillislab/resource/Primate_MTG_coexp/Great_Ape_Data/
https://github.com/AllenInstitute/Great_Ape_MTG/blob/master/data/
https://github.com/AllenInstitute/Great_Ape_MTG/blob/master/data/
https://data.nemoarchive.org/biccn/grant/u01_sestan/sestan/transcriptome/sncell/10x_v3/
https://data.nemoarchive.org/biccn/grant/u01_sestan/sestan/transcriptome/sncell/10x_v3/
https://data.nemoarchive.org/biccn/grant/u01_sestan/sestan/transcriptome/sncell/10x_v3/
https://data.nemoarchive.org/publication_release/Lein_2020_M1_study_analysis/Transcriptomics/sncell/10X/
https://data.nemoarchive.org/publication_release/Lein_2020_M1_study_analysis/Transcriptomics/sncell/10X/
https://data.nemoarchive.org/publication_release/Lein_2020_M1_study_analysis/Transcriptomics/sncell/10X/
https://www.biorxiv.org/content/10.1101/2023.05.19.541520v1
https://www.biorxiv.org/content/10.1101/2023.05.19.541520v1
https://gnomad.broadinstitute.org/downloads#v4-constraint
https://gnomad.broadinstitute.org/downloads#v4-constraint
https://gene.sfari.org/
https://gene.sfari.org/
https://www.nature.com/articles/s41586-022-04556-w
https://www.nature.com/articles/s41586-023-06542-2
https://www.nature.com/articles/s41586-023-06542-2
https://brainscope.gersteinlab.org/output-sample-annotated-matrix.html
https://brainscope.gersteinlab.org/output-sample-annotated-matrix.html
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE144825
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE144825
https://doi.org/10.1186/1471-2164-15-599
https://github.com/astarr97/Cell_Type_Evolution
https://doi.org/10.1186/2040-2392-4-36
https://doi.org/10.1186/2040-2392-4-36
https://doi.org/10.1038/s41586-021-03343-3


Ahlmann-Eltze C, Huber W. Comparison of transformations for single- 
cell RNA-seq data. Nat Methods. 2023:20(5):665–672. https://doi. 
org/10.1038/s41592-023-01814-1.

Arendt D, Musser JM, Baker CVH, Bergman A, Cepko C, Erwin DH, 
Pavlicev M, Schlosser G, Widder S, Laubichler MD, et al. The origin 
and evolution of cell types. Nat Rev Genet. 2016:17(12):744–757. 
https://doi.org/10.1038/nrg.2016.127.

Bakken TE, Jorstad NL, Hu Q, Lake BB, Tian W, Kalmbach BE, Crow 
M, Hodge RD, Krienen FM, Sorensen SA, et al. Comparative cellu
lar analysis of motor cortex in human, marmoset and mouse. 
Nature. 2021a:598(7879):111–119. https://doi.org/10.1038/s41586- 
021-03465-8.

Bakken TE, Van Velthoven CT, Menon V, Hodge RD, Yao Z, Nguyen 
TN, Graybuck LT, Horwitz GD, Bertagnolli D, Goldy J, et al. 
Single-cell and single-nucleus RNA-seq uncovers shared and distinct 
axes of variation in dorsal LGN neurons in mice, non-human pri
mates, and humans. eLife. 2021b:10:e64875. https://doi.org/10. 
7554/eLife.64875.

Batiuk MY, Tyler T, Dragicevic K, Mei S, Rydbirk R, Petukhov V, 
Deviatiiarov R, Sedmak D, Frank E, Feher V, et al. Upper cortical 
layer-driven network impairment in schizophrenia. Sci Adv. 
2022:8(41):eabn8367. https://doi.org/10.1126/sciadv.abn8367.

Benton ML, Abraham A, LaBella AL, Abbot P, Rokas A, Capra JA. The 
influence of evolutionary history on human health and disease. Nat 
Rev Genet. 2021:22(5):269–283. https://doi.org/10.1038/s41576- 
020-00305-9.

Berg J, Sorensen SA, Ting JT, Miller JA, Chartrand T, Buchin A, 
Bakken TE, Budzillo A, Dee N, Ding S-L, et al. Human neocortical 
expansion involves glutamatergic neuron diversification. Nature. 
2021:598(7879):151–158. https://doi.org/10.1038/s41586-021- 
03813-8.

Boyle EA, Li YI, Pritchard JK. An expanded view of complex traits: from 
polygenic to omnigenic. Cell. 2017:169(7):1177–1186. https://doi. 
org/10.1016/j.cell.2017.05.038.

Bromberg-Martin ES, Matsumoto M, Hikosaka O. Dopamine in mo
tivational control: rewarding, aversive, and alerting. Neuron. 
2010:68(5):815–834. https://doi.org/10.1016/j.neuron.2010.11. 
022.

Burns JK. An evolutionary theory of schizophrenia: cortical connectiv
ity, metarepresentation, and the social brain. Behav Brain Sci. 
2004:27(6):831–855; discussion 855-885. https://doi.org/10.1017/ 
S0140525X04000196.

Chang X, Zhao W, Kang J, Xiang S, Xie C, Corona-Hernández H, 
Palaniyappan L, Feng J. Language abnormalities in schizophrenia: 
binding core symptoms through contemporary empirical evidence. 
Schizophrenia. 2022:8(1):95. https://doi.org/10.1038/s41537-022- 
00308-x.

Chen S, Francioli LC, Goodrich JK, Collins RL, Kanai M, Wang Q, 
Alföldi J, Watts NA, Vittal C, Gauthier LD, et al. A genomic muta
tional constraint map using variation in 76,156 human genomes. 
Nature. 2024:625(7993):92–100. https://doi.org/10.1038/s41586- 
023-06045-0.

Chou H-H, Takematsu H, Diaz S, Iber J, Nickerson E, Wright KL, 
Muchmore EA, Nelson DL, Warren ST, Varki A. A mutation in hu
man CMP-sialic acid hydroxylase occurred after the Homo-Pan di
vergence. Proc Natl Acad Sci U S A. 1998:95(20):11751–11756. 
https://doi.org/10.1073/pnas.95.20.11751.

Crow TJ. Is schizophrenia the price that homo sapiens pays for lan
guage? Schizophr Res. 1997:28(2-3):127–141. https://doi.org/10. 
1016/S0920-9964(97)00110-2.

Dankwa S, Lim C, Bei AK, Jiang RHY, Abshire JR, Patel SD, 
GoldbergJM, Moreno Y, Kono M, Niles JC, et al. Ancient 
human sialic acid variant restricts an emerging zoonotic malaria 
parasite. Nat Commun. 2016:7(1):11187. https://doi.org/10.1038/ 
ncomms11187.

Darnell RB. The genetic control of stoichiometry underlying autism. 
Annu Rev Neurosci. 2020:43(1):509–533. https://doi.org/10.1146/ 
annurev-neuro-100119-024851.

Dear R, Wagstyl K, Seidlitz J, Markello RD, Arnatkevičiu̅tė A, 
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